UK NEQAS

International Quality Expertise

Histocompatibility & Immunogenetics

Director:Dr MT ReesDeputy Director:Mrs D PritchardOperations Manager:Miss A De'Ath

Tel: Email: Web: +44 (0) 1443 622185 <u>ukneqashandi@wales.nhs.uk</u> www.ukneqashandi.org.uk Correspondence to: UK NEQAS for H&I Welsh Blood Service Ely Valley Road Talbot Green Pontyclun CF72 9WB

Interpretive Educational Scheme (iED) Clinical Scenario 2/2021 – Haematopoietic Stem Cell Transplantation

Dispatched on 31st August 2021

Summary of Submitted Responses

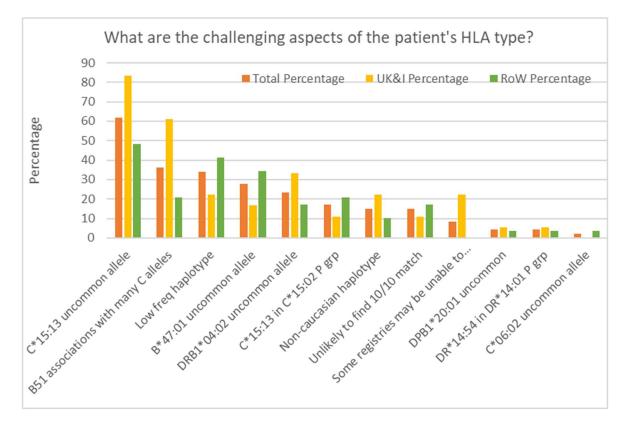
A total of 47 responses were received, 18 from UK & Ireland (UK&I) based laboratories and 29 from Rest of the World (RoW) based laboratories.

Background:

A 35 year old male patient suffering from Acute Myeloid Leukaemia (AML) received a haploidentical transplant from their 47 year old brother in 2018. HLA types for patient and sibling donor are given below.

Patient's HLA Type:

HLA-A*02:01, A*03:01; B*47:01, B*51:01; C*06:02, C*15:13; DRB1*04:02, DRB1*14:54; DRB3*02:02, DRB4*01:03; DQB1*03:02, DQB1*05:03; DPB1*04:01, DPB1*20:01

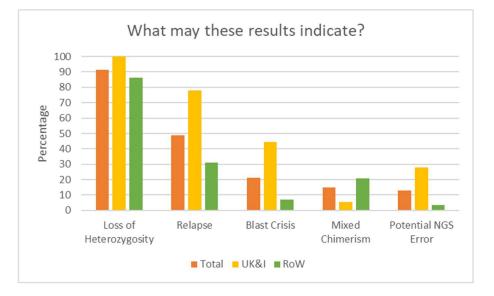

Brother's HLA Type:

HLA-A*02:01, A*-; B*51:01, B*-; C*14:02, C*15:13; DRB1*04:02, DRB1*04:03; DRB4*01:03, DRB4*-; DQB1*03:02, DQB1*-; DPB1*04:01, DPB1*-

Reason	т	otal	U	K&I	RoW		
	Number	%	Number	%	Number	%	
C*15:13 uncommon allele	29	62	15	83	14	48	
B51 associations with many C alleles	17	36	11	61	6	21	
Low frequency haplotype	16	34	4	22	12	41	
B*47:01 uncommon allele	13	28	3	17	10	34	
DRB1*04:02 uncommon allele	11	23	6	33	5	17	
C*15:13 in C*15:02 P grp	8	17	2	11	6	21	
Non-Caucasian haplotype	7	15	4	22	3	10	
Unlikely to find 10/10 match	7	15	2	11	5	17	
Some registries may be unable to distinguish DR*14:01/DR*14:54	4	9	4	22	0	0	
DPB1*20:01 uncommon	2	4	1	6	1	3	

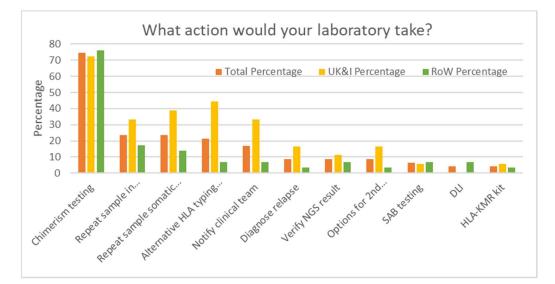
Question 1 - What aspects of the patient's HLA type make this a challenging unrelated donor search?

DR*14:54 in DR*14:01 P grp	2	4	1	6	1	3
C*06:02 uncommon allele	1	2	0	0	1	3

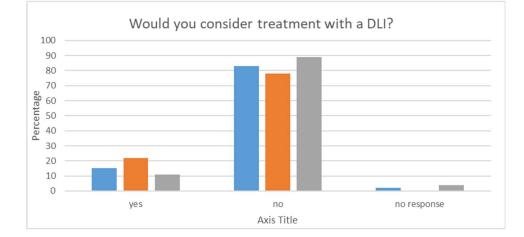

In November 2020, a post-transplant peripheral blood sample was received in the laboratory for HLA typing with suspected relapse.

HLA typing of the patient was performed post-transplant on a peripheral blood sample using next generation sequencing:

HLA-A*02:01, A*-; B*51:01, B*-; C*15:13, C*-; DRB1*04:02, DRB1*-; DRB4*01:03, DRB4*-; DQB1*03:02, DQB1*-


Reason	Tota	I	UK8	kl	RoW		
	Number	%	Number	%	Number	%	
Loss of Heterozygosity	43	91	18	100	25	86	
Relapse	23	49	14	78	9	31	
Blast Crisis	10	21	8	44	2	7	
Mixed Chimerism	7	15	1	6	6	21	
Potential NGS Error	6	13	5	28	1	3	

Question 2.2 - What action would your laboratory take?


Reason	Total		UK8	l.	RoW		
	Number	%	Number	%	Number	%	
Chimerism testing	35	74	13	72	22	76	
Repeat sample in remission	11	23	6	33	5	17	
Repeat sample somatic cells	11	23	7	39	4	14	
Use alternative HLA typing method	10	21	8	44	2	7	
Notify clinical team	8	17	6	33	2	7	
Diagnose relapse	4	9	3	17	1	3	
Verify NGS result	4	9	2	11	2	7	
Investigate options for 2nd	4	9	3	17	1	3	
transplant							
Perform single antigen bead testing	3	6	1	6	2	7	
Donor lymphocyte infusion	2	4	0	0	2	7	
HLA-KMR kit	2	4	1	6	1	3	

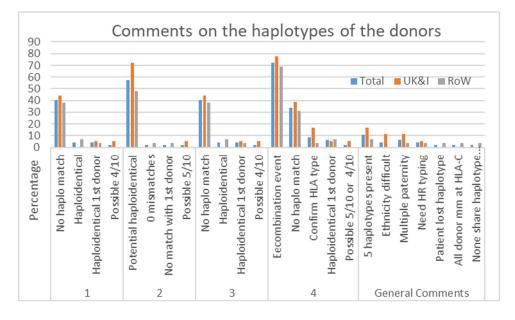
Post-transplant chimerism results for the patient showed 20% donor cells in the whole blood samples and 95% donor cells in the T cell sample.

Question 3.1 – Would you consider treatment with donor lymphocyte infusions for this patient? Give reasons for your answer.

Decision	Reasons	Tot	al	UK	&I	Ro	N
		Number	%	Number	%	Number	%
Yes	To increase GvL effect	7	15	4	22	3	11
	Aim to achieve complete chimerism						
	To avoid relapse						
	More useful for graft failure than active relapse						
	May be less effective as no mm for donor cells to target						
	Considered for all relapse patients unless have GvHD						
No	Increased risk of GvHD	39	83	14	78	25	89
	No benefit - no mismatch for donor cells to target						
	A second allograft from another donor with mismatched haplotype should be considered over DLI (EBMT Guidelines)						
	Relapse is extensive so unlikely to respond to DLI						
	95% of T cells are donor derived so no benefit of DLI						
	DLI only indicated if the lymphocyte fraction low						
	Relapse in myeloid line						
	Patient could benefit from NK cell cellular immunotherapy						
	Decision made by clinical team						
No response	We do not give advice to clinicians regarding post-transplant treatment	1	2	0	0	1	4

The patient is treated with chemotherapy and a second haplo-identical transplant is planned. HLA typing reports from four further siblings are received from the family's country of origin:

ID	Gender	Age	HLA Type
Patient	Male	35	A*02:01, B*51:01, C*15:13, DRB1*04:02, DQB1*03:02
			A*03:01, B*47:01, C*06:02, DRB1*14:54, DQB1*05:03
1 st Donor (Brother)	Male	50	A*02:01, B*51:01, C*15:13, DRB1*04:02, DQB1*03:02 A*02:01, B*51:01, C*14:02, DRB1*04:03, DQB1*03:02
Donor 1	Male	50	A*02, B*51, C*14, DRB1*04, DQB1*03
			A*24, B*38, C*12, DRB1*13, DQB1*06
Donor 2	Female	46	A*03, B*47, C*06, DRB1*14, DQB1*05:03
			A*24, B*38, C*12, DRB1*13, DQB1*06
Donor 3	Female	47	A*02, B*51, C*14, DRB1*04, DQB1*03
			A*24, B*38, C*12, DRB1*13, DQB1*06
Donor 4	Female	49	A*02, B*38, C*12, DRB1*13; DQB1*06
			A*02, B*51, C*14, DRB1*04, DQB1*03

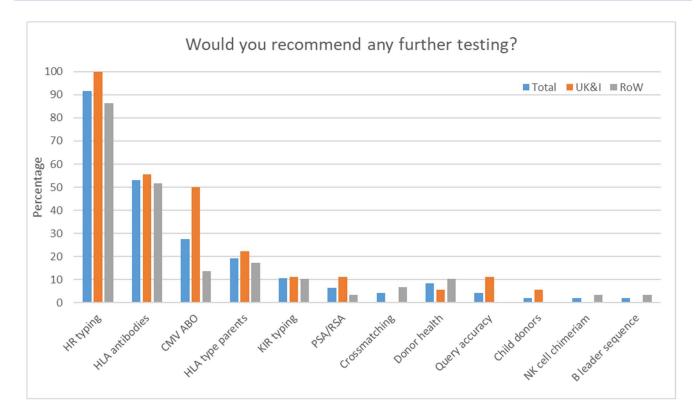

Question 4.1 – Comment on the haplotypes of the donors?

Donor	Comments	Total		UK8	: I	RoV	1
		Number	%	Number	%	Number	%
1	Does not share a haplotype with patient	19	40	8	44	11	38
	Haploidentical	2	4	0	0	2	7
	Shares haplotype with 1st donor	2	4	1	6	1	3
	Possible 4/10	1	2	1	6	0	0
2	Potentially shares a haplotype with patient	27	57	13	72	14	48
	0 mismatches	1	2	0	0	1	3
	No match with 1st donor	1	2	0	0	1	3
	Possible 5/10	1	2	1	6	0	0
3	Does not share a haplotype with patient	19	40	8	44	11	38
	Haploidentical	2	4	0	0	2	7
	Shares haplotype with 1st donor	2	4	1	6	1	3
	Possible 4/10	1	2	1	6	0	0
4	Potential recombination event HLA-A	34	72	14	78	20	69
	Does not share a haplotype with patient	16	34	7	39	9	31
	Confirm HLA type	4	9	3	17	1	3
	Haploidentical with 1st donor	3	6	1	6	2	7
	Possible 5/10 HvG or 4/10 GvH direction	1	2	1	6	0	0

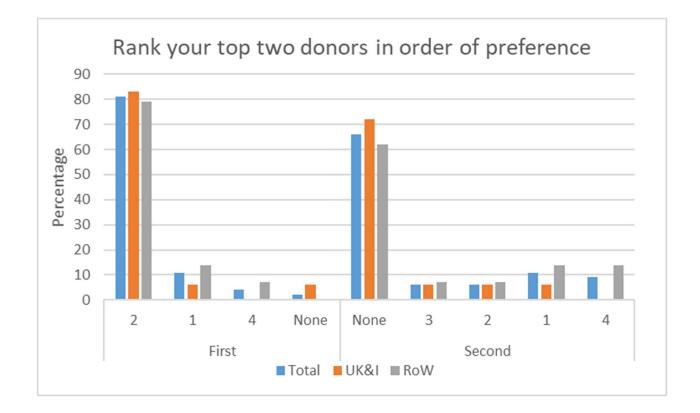
UK NEQAS International Quality Expertise

Histocompatibility & Immunogenetics

General	5 haplotypes present	5	11	3	17	2	7
Comments	Ethnicity difficult to define	2	4	2	11	0	0
	Potential multiple paternity	3	6	2	11	1	3
	Need high resolution typing	2	4	1	6	1	3
	Patient lost haplotype	1	2	0	0	1	3
	All donor mm at HLA-C with patient post-tx	1	2	0	0	1	3
	None share haplotype between patient and 1st donor	1	2	0	0	1	3



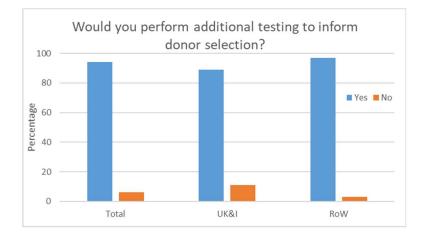
Question 4.2 – Would you recommend any further testing?


Further Testing	Tota	I	UK&	.I	RoW	
	Number	%	Number	%	Number	%
High resolution typing of donors	43	91	18	100	25	86
Test patient for HLA antibodies	25	53	10	56	15	52
CMV and/or Blood Group	13	28	9	50	4	14
HLA type parents	9	19	4	22	5	17
KIR typing	5	11	2	11	3	10
Test donors for patient specific HLA antibodies	3	6	2	11	1	3
Crossmatching	2	4	0	0	2	7
Donor health / pregnancy info	4	9	1	6	3	10
Query accuracy of donor HLA typing	2	4	2	11	0	0
Enquire if patient has children able to donate	1	2	1	6	0	0
NK cell chimerism	1	2	0	0	1	3
B leader sequence of donor and patient	1	2	0	0	1	3

UK NEQAS International Quality Expertise

Histocompatibility & Immunogenetics

Question 4.3 – Based on the information provided so far, rank the top 2 related donors in the order of preference and outline your reasons.

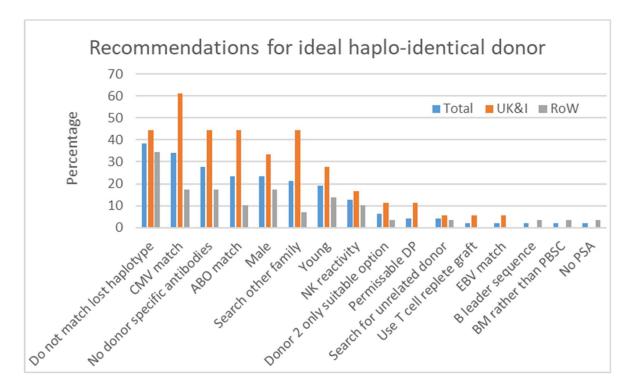

UK NEQAS

International Quality Expertise

Histocompatibility & Immunogenetics

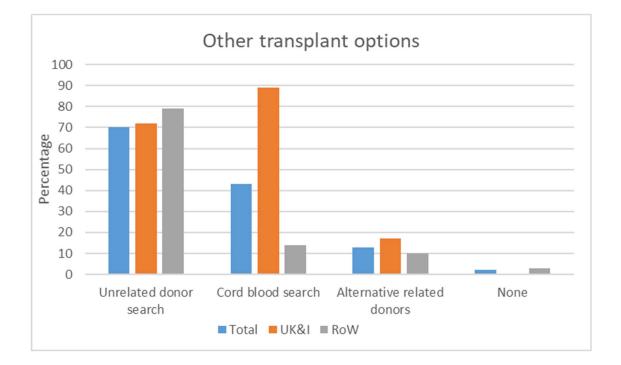
Choice	Donor	Reason	Tota	I	UK&	I	RoW	/
			Number	%	Number	%	Number	%
First	2	Potential shared haplotype	38	81	15	83	23	79
		Mismatch haplotype different to lost haplotype						
		Possible enhanced GvL effect						
		Youngest donor						
	1	Male donor	5	11	1	6	4	14
		Haploidentical					2	
		Likely less sensitising events						
	4	Closest match to first donor	2	4	0	0		7
		Least mismatches of all donors						
	None	Wait until NGS typing performed	1	2	1	6	0	0
Second	None	No other haploidentical donors	31	66	13	72	18	62
		All other donors HLA-C mismatched						
		Re-graft original donor						
		Use matched unrelated donor						
		Wait until NGS typing performed						
		Don't use original donor due to LoH						
	3	Haploidentical	3	6	1	6	2	7
		Younger than Donor 4						
		Avoid donor-recipient mismatch linked with GvHD						
	2	Best HLA match - one mismatch at HLA-C	3	6	1	6	2	7
		Youngest donor						
	1	Male donor	5	11	1	6	4	14
		Antigen match						
		May get NK alloreactivity						
	4	Possibility of NK cell reactivity	4	9	0	0	4	14
		Almost haploidentical						

Question 5.1 – Would you perform additional testing or require any further information to inform selection of the related donor? Give reasons for your answer.

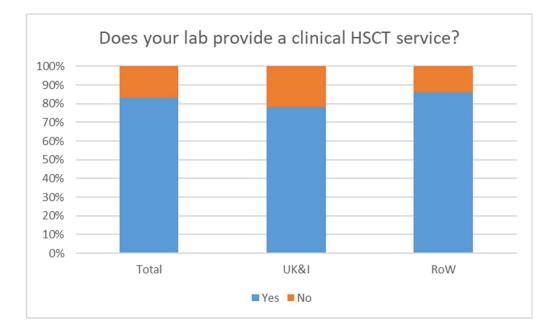


UK NEQAS International Quality Expertise

Decision	Reason	Tota	I	UK&	.I	RoW	1
		Number	%	Number	%	Number	%
Yes	High resolution HLA genotype / family pedigree	44	94	16	89	28	97
	KIR genotyping						
	ABO and/or CMV testing						
	Screen patient for HLA antibodies						
	Sensitisation history including pregnancies						
	Medical fitness incl. IDM, weight						
	Crossmatching if DSA present						
	Chimerism testing						
	Perform search for an unrelated donor						
	Test donor for patient specific HLA antibodies						
	Check B leader sequences						
	Consider NK cell immunotherapy						
No	Donor 2 the only acceptable related donor	3	6	2	11	1	3
	Due to limits donor options additional testing of limited benefit						

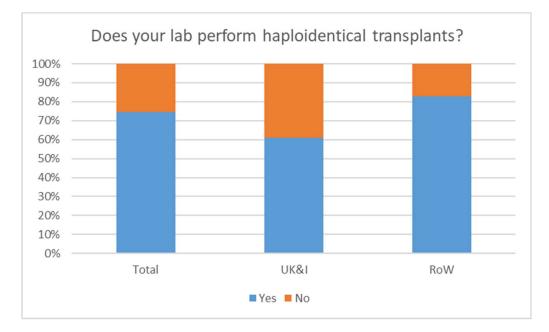

Question 6 – What recommendations (if any) would you give regarding the ideal haploidentical donor for this patient?

Reason	Tota	l	UK&	d	RoW	
	Number	%	Number	%	Number	%
New haploidentical donor should not match the lost	18	38	8	44	10	34
haplotype						
CMV match	16	34	11	61	5	17
No donor specific antibodies	13	28	8	44	5	17
ABO match	11	23	8	44	3	10
Male	11	23	6	33	5	17
Search other family members (NIMA or NIPA)	10	21	8	44	2	7
Young	9	19	5	28	4	14
NK reactivity	6	13	3	17	3	10
Donor 2 only suitable option	3	6	2	11	1	3
Permissable DP	2	4	2	11	0	0
Search for unrelated donor	2	4	1	6	1	3
Use T cell replete graft for GvL effect	1	2	1	6	0	0
EBV match	1	2	1	6	0	0
B leader sequence compatible	1	2	0	0	1	3
BM rather than PBSC	1	2	0	0	1	3
No patient specific HLA antibodies	1	2	0	0	1	3



Question 7 – Would you consider any other transplant options?

Option	Tota	al	UK	<u>k</u> l	RoW	
	Number	%	Number	%	Number	%
Unrelated donor search	33	70	13	72	23	79
Cord blood search	20	43	16	89	4	14
Alternative related donors	6	13	3	17	3	10
None	1	2	0	0	1	3



Question 8 -	– Does your laborato	ry pro	ovide a clinical HSCT s	ervice	er		
Response	Total		UK&I	RoW	RoW		
	Number	%	Number	%	Number	%	
Yes	39	83	14	78	25	86	
No	8	17	4	22	4	14	

Question 9.1 – Does you laboratory routinely perform haploidentical transplants?

Response	Total		UK&I		RoW		
	Number	%	Number	%	Number	%	
Yes	35	74	11	61	24	83	
No	12	26	7	39	5	17	

Question 8 – Does your laboratory provide a clinical HSCT service?

Question 9.2 – Any further comments?

- Aware of the potential use of NK cells in haplo transplantation, and their use in triggering graft vs leukaemia effect, in AML. However, this would not be undertaken in our routine setting.
- Are they all full siblings? There is a large age gap >10 years between patient and siblings, who are all of a similar age. If parents available would request samples to confirm family haplotypes.
- Haploidentical transplants are performed at this centre. Haploidentical transplant would be the option selected when the patient does not have a suitable matched sibling or 10/10 unrelated donor.
- HLA DP information is not recorded in the patient's post-transplant PB sample.
- In recent years, haploidentical transplants are being used more frequently, but they are not the preferred transplant option if a suitable HLA matched related, HLA matched unrelated or 9/10 unrelated donor is available.
- We only assist for HLA typing, Ab detection, KIR genotyping and time to time for donor selection (depending on the responsible physician) The HSCT performed within the Hematology clinics
- We do not have experience of allogenic bone marrow transplant. We only perform familial HLA typing study.
- Our laboratory does not perform chimerism and does not have any physician or contact with patients. Both are done by the hospital.
- We found this really confusing as we only perform haploidentical transplants when they are haplo at all loci. The C locus typing was a challenge to us as 3 0f the 4 donors were a complete mismatch.
- We do not perform chimerism in our lab and do not give advice to clinicians regarding post-transplant treatment.
- While we don't perform transplants ourselves, or make decisions regarding donor selections, we provide HLA typing, antibody screening and clinical data for transplantation. We don't perform all post-transplant monitoring, but we do perform post-transplant HLA antibody monitoring as well as platelet transfusion support. We do a lot of testing for haploidentical HSCT transplants, but only for a few hospitals.

General Comments

- Longitudinal chimaerism results would have been useful, rather than a snapshot, so that any trends could be spotted.
- This laboratory does not perform chimerism testing- it would be part of the transplant protocol in suspected relapse.
- Is there a mistake in the sibling HLA types?

Comments and suggested responses from the H&I experts providing scenario

Question 1

B47 is generally low frequency in our local population. The highest known frequencies are found in Central and Western Africa. This will likely mean it is challenging to find a 10/10 donor for this patient.

Question 2

The results indicate a possible loss of heterozygosity (LoH) post-transplant with the loss of mismatched haplotype as part of GVL immune evasion by leukemic stem cells.

It would be good practice to request a buccal swab sample from the patient to confirm LoH. If this is the case you would expect the HLA type from the buccal swab to correspond to pre-transplant HLA type. Also, information on proportion of blast cells can be used to confirm LoH.

Question 3

An attempt to induce remission by the infusion of donor T-lymphocytes (DLI) would be expected to be ineffective against the leukemic cells due to the LoH and therefore mismatched HLA target antigens. A DLI may also potentially be harmful to the patient due to the risk of inducing GvHD.

Question 4

Donor 4 has a HLA-A*02 which could be attributed to a recombination event based on segregation of haplotypes. We believe Donor 2 would be the preferred option as this donor is haploidentical but the mismatched haplotype differs to the haplotype lost by the leukemic cells signifying a potential graft versus leukemic (GvL) effect. This donor is also the youngest sibling.

Question 5

Further tested is recommended. This could include testing for HLA antibodies, high resolution HLA typing including HLA-DPB1, verification typing and KIR typing.

Question 6

We would recommend a second transplantation from a different HLA-haploidentical donor, selected for being mismatched against the HLA haplotype retained by leukemic blasts.

Patient Update

HLA antibody screening of the patient revealed he was donor specific antibody negative for all the potential sibling donors. Following chemotherapy to reduce disease burden, he was transplanted with Donor 2 (female, 46 years old) who was chosen to harness the potential GVL effect against HLA retained by the leukemic stem cells which experienced LoH to prevent another relapse. The patient had full donor chimerism 100 days post-transplant.